Nitinol SMA Hold-Down Release Mechanism



Check out out site!

TEAM STELLARHOLD:

VALENTIN GAMEZ, NATHAN OLSON, MAIA WARREN

# Problem Definition & Requirements



### Introduction- What is an HDRM?



Figure 1: JWST Unfolding Example



Figure 2: CubeSat Unfolding Example



## Why Design a New One?

- 1) Most designs are not resettable
  - Cost per use = Cost per unit for non-resettable
  - ► Why reset?
- 2) Explore different actuation techniques
- 3) Original client, General Atomics EMS, wanted an in-house design.



Figure 3: Single-use HDRM

### Requirements

### Table 1: Customer needs and Engineering Requirements Table

| #  | CR                                                 | ER                             |  |  |  |  |
|----|----------------------------------------------------|--------------------------------|--|--|--|--|
| 1  | No Space Debris                                    | No breakaway parts             |  |  |  |  |
| 2  | Low Outgassing                                     | Low outgassing materials       |  |  |  |  |
| 3  | No Combustion                                      | No combustion                  |  |  |  |  |
| 4  | 20x30 cm Deploy Solar Panels                       | Minimize volume                |  |  |  |  |
| 5  | Minimize Protruding Material                       | Minimize protruding material   |  |  |  |  |
| 6  | Maximize Deployment Load/<br>Simultaneously        | Maximize deployment force      |  |  |  |  |
| 7  | Easily Resettable                                  | No deformation                 |  |  |  |  |
| 8  | Retain Stowed Configuration<br>prior to deployment | Maximize retention reliability |  |  |  |  |
| 9  | Receive Input Command                              | Receive input command          |  |  |  |  |
| 10 | Minimize Weight                                    | Minimize weight                |  |  |  |  |
| 11 | Minimize Reset Time                                | Minimize actuation time        |  |  |  |  |
| 12 |                                                    | Maximize Nitinol life          |  |  |  |  |

Olson

4

# Design Process & Solution

### Decision Process - QFD

|                                                        |                   | Technical/Engineering Requirement |                          |               |                 |                            |                           |                |                                |                    |                 |                     |
|--------------------------------------------------------|-------------------|-----------------------------------|--------------------------|---------------|-----------------|----------------------------|---------------------------|----------------|--------------------------------|--------------------|-----------------|---------------------|
| Customer Needs                                         | Customer Weights  | Vo Breakaway parts                | .ow outgassing materials | no combustion | ninimize volume | ninimize external hardware | naximize deployment force | no deformation | maximize retention reliability | must receive input | minimize weight | minimize reset time |
| No Space Debris                                        | 5                 | 1                                 |                          | 1             |                 | 1                          |                           |                | 1                              | _                  |                 | 1                   |
| low outgassing                                         | 3                 |                                   | 1                        |               |                 |                            |                           | 1              | 1                              |                    |                 |                     |
| No pyrotechnics                                        | 5                 | 1                                 | 1                        | 1             |                 |                            |                           | 1              | 1                              |                    | 1               | 1                   |
| must deploy solar panels 20x30cm                       | 3                 |                                   |                          |               | 1               |                            |                           |                |                                |                    |                 |                     |
| cannot protrude more than 1cm from bottom              | 4                 |                                   |                          |               | 1               | 1                          |                           |                | -1                             |                    | 1               | -1                  |
| Must deploy panels on all sides simultaneously         | 3                 |                                   |                          |               |                 | -1                         | 1                         |                | 1                              |                    |                 |                     |
| Must be able to easily reset                           | 5                 | 1                                 |                          | 1             | -1              |                            |                           | 1              |                                |                    |                 | 1                   |
| Must be able to retained stowed config prior to launch | 5                 |                                   |                          |               |                 | 1                          | 1                         |                | 1                              |                    |                 |                     |
| must release on command                                | 3                 |                                   |                          |               |                 |                            |                           |                |                                | 1                  |                 |                     |
| must have rotational abilities                         | 2                 |                                   |                          |               |                 |                            |                           |                | 1                              |                    |                 |                     |
| Technical R                                            | equirement Units  | #                                 | ₽%                       | 0/0           | Ω⊒              | E                          | Z                         | ₽%             | ₽%                             | 0/0                | D               | S                   |
| Technical Rec                                          | quirement Targets | 0.00                              | 0.10                     | <u> </u>      | 1.00            | -                          | 25                        | 2              | 98.5                           |                    | 200             | <60                 |
| Absolute Tech                                          | nical Importance  | 15.0                              | 8.0                      | 15.0          | 2.0             | 11.0                       | 8.0                       | 13.0           | 19.0                           | 3.0                | 9.0             | 11.0                |
| Relative Tech                                          | nical Importance  | 3                                 | 2                        | 3             | 1               | 2                          | 2                         | 3              | 5                              | 1                  | 2               | 2                   |

Figure 4: Annotated QFD

## **Design Solution**

- Pin-puller
- Manual reset
- Nitinol shape memory alloy (SMA) based movement
- Locking design (ball bearing)
- External power source



Figure 5: Sketch of Design Solution

### Nitinol – What is It?

- Nickel and Titanium based
- "Shape Memory" Alloy



Nitinol SMA Example Video

### What Does a Pin Puller Do?



How a Pin-Puller Works [1]

Gamez 9

### Design Approach – Flow Model



#### Figure 6: Process Flow Model

### Gamez 10

### Electrical Components



Figure 7: Pulse Width Modulated Circuit Schematic



Figure 8: Final Circuit Build

# Prototyping & Final Designs

### Design Approach – Prototyping



Figure 10: 2<sup>nd</sup> Prototype

Figure 9: 1<sup>st</sup> Prototype



### Design Approach – Last Prototype



Figure 11: 3<sup>rd</sup> Prototype

Olson

14

### Design Iteration: Alternative Design



Figure 12: Alternate Design: Proof of Concept



Figure 13: Ball Plunger



# Final Design

### Designed for Manufacturing

- Off-the-shelf U-channels and rods
- Most operations achievable on the manual mill and lathe
- Other parts manufactured using 3-d printing and CNC machining



Figure 14: Assembled View of Final Design CAD

### CAD Explosion





Figure 16: Exploded Animation of Assembly

Figure 15: Exploded View of Assembly

## Final Design



Figure 17: Fully Assembled Device (Front View)



Figure 18: Fully Assembled Device (Top View)

### Demonstration



# Manufacturing & Speedbumps

# Manufacturing Process – Manual Operations



Figure 19: U-Channels to Cut Down to Size for Enclosure



Figure 20: Top Cap Manufactured on Manual Mill

Warren 21

## Manufacturing Process – Automated Operations



Figure 21: 3-D Printed for Low Friction



Figure 22: CNC'd Due to Complex Geometry

## **Obstacles & Modifications**

- Current design required drilling and tapping 8x holes 1.6mm diameter.
- Broke two taps & 1 drill bit.
- Settled for sleeve and clamping for holding.



Figure 23: Original assembly method



Figure 24: Manufactured Model (SMA spring missing) with Sleeve

### Warren 23

# Testing

# Testing Plan

### Table 2: Testing Plan Summary

### Table 3: Recap of Requirements

|              |                           |                   | #             | CR                                                    | ER                                |
|--------------|---------------------------|-------------------|---------------|-------------------------------------------------------|-----------------------------------|
| Experiment # | Experiment/ Test          | Relevant DRs      | 1             | No Space Debris                                       | No breakaway parts                |
| 1            | Actuation Test            | ER9/CR9, ER3/CR3, | 2             | Low Outgassing                                        | Low outgassing<br>materials       |
|              | 3                         |                   | No Combustion | No combustion                                         |                                   |
| 2            | Actuation Voltage Test    | ER11/CR11         | 4             | 20x30 cm Deploy<br>Solar Panels                       | Minimize volume                   |
| 3            | Spring Force              | ER9               | 5             | Minimize Protruding<br>Material                       | Minimize protruding material      |
| 4            | Shear Load Test           | ER7, ER6/CR6      | 6             | Maximize Deployment<br>Load/ Simultaneously           | Maximize deployment<br>force      |
| 5            | Measurement Verifications | ER5/CR5, ER4      | 7             | Easily Resettable                                     | No deformation                    |
| 6            | Weight Verifications      | ER10/CR10         | 8             | Retain Stowed<br>Configuration prior to<br>deployment | Maximize retention<br>reliability |
| 7            | Outgassing Verifications  | ER2/CR2           | 9             | Receive Input<br>Command                              | Receive input<br>command          |
| 8            | CubeSat Deployment        |                   | 10            | Minimize Weight                                       | Minimize weight                   |
| 0            |                           |                   | 11            | Minimize Reset Time                                   | Minimize actuation<br>time        |
| 7            |                           |                   | 12            |                                                       | Maximize Nitinol life             |
|              |                           |                   |               |                                                       | Gamez 2                           |

# Testing (cont'd)

### Table 4: Specification Sheet (ERs)

| Engineering Requirement          | Target | Units      | Tolerance   | Measured/<br>Calculated<br>Value | ER<br>Met? Y/<br>N | Client Accept<br>able? Y/N |
|----------------------------------|--------|------------|-------------|----------------------------------|--------------------|----------------------------|
| No breakaway parts               | 0      | -          | 0           | 0                                | Y                  | Y                          |
| Low outgassing materials         | 0      | -          | 0           | -                                | Ν                  | Y                          |
| No combustion                    | 0      | -          | 0           | 0                                | Y                  | Y                          |
| Minimize volume                  | 1      | cu. In     | +0.5        | 3.4 in <sup>3</sup>              | Ν                  | Y                          |
| Minimize protruding material     | 1      | cm         | 0.1         | 0.1 mm                           | Y                  | Y                          |
| Maximize deployment force        | 25     | Ν          | - 5         | 14.5                             | Ν                  | Y                          |
| No deformation                   | 0      | %          | +2          | 0                                | Y                  | Y                          |
| Maximize retention reliability   | 100    | %          | 1.5         | 100                              | Y                  | Y                          |
| Receive input command            | -      | -          | -           | -                                | Y                  | Y                          |
| Minimize weight                  | 200    | g          | +50<br>-200 | 75                               | Y                  | Y                          |
| Minimize reset time              | 30     | sec        | +30         | 15                               | Y                  | Y                          |
| Maximize SMA Spring life<br>(1N) | 50     | Cycl<br>es | 5           | 20                               | N                  | Y                          |

### Table 5: Specification Sheet (CRs)

| Customer<br>Requirements                 | CR Met? Y/N | Client Acceptable?<br>Y/N |  |  |  |
|------------------------------------------|-------------|---------------------------|--|--|--|
| No Space Debris                          | Y           | Y                         |  |  |  |
| Low Outgassing                           | Ν           | Y                         |  |  |  |
| No Combustion                            | Y           | Y                         |  |  |  |
| Can deploy 20x30cm<br>panels             | N           | Y                         |  |  |  |
| Minimize protruding material             | Y           | Y                         |  |  |  |
| max deployment load<br>/ simultaneously  | Ν           | Y                         |  |  |  |
| Easily resettable                        | Y           | Y                         |  |  |  |
| Retain stowed config prior to deployment | Y           | Y                         |  |  |  |
| Receive input<br>command                 | Y           | γ                         |  |  |  |
| Minimize Weight                          | Y           | Y                         |  |  |  |
| minimize reset time                      | Y           | Y                         |  |  |  |

Gamez 26

# Budget & Future Work

### Budget & Expenses

Table 6: Breakdown of Expenses and Purchases – photos omitted for simplicity

| Part Description:          | Cost:      | Quantity: | Date:    | Make/ Buy: | Primary Vendor: | Manufacturer:          |
|----------------------------|------------|-----------|----------|------------|-----------------|------------------------|
| Acrylic Sheets             | 21.83      | 2         | 09/06/22 | Buy        | Amazon          | Acrylic Mega Store     |
| Nitinol Spring (2.4 mm)    | 19.58      | 1         | 02/23/22 | Buy        | Amazon          | Kellogg's Research Lab |
| Aluminum Block             | \$40.39    | 2         | 09/06/22 | Buy        | Amazon          | VERNUOS                |
| Generic Springs            | \$14.18    | 1         | 09/06/22 | Buy        | Amazon          | Ninoge                 |
| Ball-Nose Plunger          | \$8.38     | 2         | 04/05/22 | Buy        | McMaster-Carr   | McMaster-Carr          |
| Arduino                    | \$49.12    | 1         | 09/06/22 | Buy        | Amazon          | Arduino                |
| Aluminum Rod               | \$30.43    | 1         | 09/06/22 | Buy        | McMaster-Carr   | McMaster-Carr          |
| U-Channel                  | \$29.55    | 2         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| PTFE Balls                 | \$12.28    | 1         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| Polyethylene Rod           | \$5.01     | 1         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| Socket Head Screw          | \$19.81    | 1         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| PTFE Film                  | \$24.45    | 1         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| Drill Bit                  | \$6.84     | 1         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| Compression Spring         | \$7.24     | 1         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| Compression Spring (Short) | \$29.28    | 1         | 10/5/22  | Βυγ        | McMaster-Carr   | McMaster-Carr          |
| Flat Head Screw            | \$9.27     | 1         | 10/5/22  | Buy        | McMaster-Carr   | McMaster-Carr          |
| Load Cell                  | \$10.42    | 2         | 10/5/22  | Buy        | Amazon          | ALAMSCN                |
| SMA Spring                 | \$20.93    | 2         | 10/5/22  | Buy        | Amazon          | NexMetal               |
| Standoff "Kit"             | \$21.83    | 1         | 10/5/22  | Buy        | Amazon          | VIGRUE                 |
| MOSFET Transistor          | \$10.50    | 1         | 10/31/22 | Buy        | Amazon          | Bridgold               |
| M1 Bit/Tap                 | \$8.50     | 2         | 10/18/22 | Buy        | Amazon          | Drill America Store    |
| Power Supply               | \$62.91    | 1         | 10/18/22 | Buy        | Amazon          | Kungber                |
| 3D Printed Part            | \$20.02    | 1         | 10/10/22 | Make       | NAU             | NAU Idea Lab           |
| 3D Printed Part            | \$16.04    | 1         | 10/26/22 | Make       | NAU             | NAU Idea Lab           |
| Part Total:                | \$457.38   |           |          |            |                 |                        |
| Total Budget:              | \$2,000.00 |           |          |            |                 |                        |
| Remaining Budget:          | \$1,542.62 |           |          |            |                 |                        |

### Budget & Expenses Cont'd

HDRM BOM Materials not used in final model Materials Manufactured Electrical Components Ordered Components Testing Components

Figure 25: Expense Summary

Warren

29

## Future Work

- Fitting the design into 1 cubic inch using more precise machinery
- Using a stronger higher-grade metal that can function under space conditions
- Customizing a stronger SMA spring to made the device more reliable and improve functionality of the bias spring
- Lower outgassing material to replace the 3D printed part
- Utilizing screws (or other method) to hold the design together
- Testing actuation under space temperature and turbulence
- Certification under NASA's standards and codes for use in space

## Thank you!

► Questions?



### Check out out site!

### References

 Ben, "Tini<sup>™</sup> Pin puller," Ensign-Bickford Aerospace & Defense, 05-Jul-2022. [Online]. Available: https://www.ebad.com/tini-pinpuller/. [Accessed: 08-Dec-2022].